

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Numerical Analysis							
CODE: MATH214	SEMESTER: SPRING						
LANGUAGE: ENGLISH	TYPE: COMPULSORY						
PRE-REQUISITES:-	THEORY	PRACTICAL	CREDIT	ECTS			
CO-REQUISITES:-							
WEEKLY HOURS:3	3	0	3	5			

CONTENT OF THE COURSE:

Methods for finding Roots of Equations: The Intermediate Value Theorem, The Mean Value Theorem, The Rolle's Theorem, Taylor Series, Approximations and Errors, Bisection, Newton-Raphson Method, Lagrange polynomial interpolation, System of Non-linear Equations, System of Linear Algebraic Equations: Gauss Elimination, Matrix Inversion, Gauss-Seidel Iteration, Least Squares Regression, Polynomial Interpolation, Numerical Differentiation, Numerical Integration, Newton-Cotes Formulae, Romberg's and Gauss-Quadrature Integration, Solution of Ordinary Differential Equations, Euler, Runge-Kutta, Multi-Step Methods, Initial-Value Problems, Boundary-Value Problems

OBJECTIVE OF THE COURSE:

Enhancing problem solving skills: Numerical methods are extremely powerful problem-solving tools. Construction and use of numerical systems for solving a problem.

WEEKLY SCHEDULE						
Week	Topics					
1	Methods for finding Roots of Equations: The Intermediate Value Theorem, The Mean					
	Value Theorem, The Rolle's Theorem					
2	Taylor Series, Approximations and Errors					
3	Bisection Method					
4	Newton-Raphson Method,					
5	Lagrange Polynomial Interpolation					
6	System of Non-linear Equations System of Linear Algebraic Equations: Gauss					
	Elimination, Matrix Inversion, Gauss-Seidel Iteration					
7	Least Squares Regression					
8	Midterm					
9	Numerical Differentiation					
10	Numerical Integration, Newton-Cotes Formula					
11	Romberg's and Gauss-Quadrature Integration					
12	Solution of Ordinary Differential Equations					
13	Euler, Runge-Kutta, Multi-Step Methods					
14	Initial-Value Problems, Boundary-Value Problems					

TEXTBOOK: Numerical Analysis, 9th ed., by Burden & Faires, edited by Brooks & Cole 2001.

REFERENCE BOOKS • Cheney W., Kincaid D., Numerical Mathematics & Computing (Edition 5), Brooks/Cole, 2004. (ISBN 0- 534-89993-7).

INSTRUCTOR(S):	Assoc. Prof. Dr. Ece Yetkin ÇELİKEL			
FORM PREPARATION DATE:	02.03.2020			

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	3	2	0	0	0	0	0	0	0	0	0
LO2	3	3	0	0	0	0	0	0	0	0	0
LO3	2	0	0	0	0	0	0	0	0	0	0
LO4	3	2	0	0	0	0	0	0	0	0	0
LO5	3	2	0	0	0	0	0	0	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

LEARNING OUTCOMES OF THE COURSE:

LO1: A comprehension of mathematics (algebra, differential, integration ...) and fundamentals of science

LO2:Ability to apply knowledge of mathematics, science and engineering to problems in electronics engineering.

LO3:Ability to recognize the needs and challenges of our age and to assess the global and social impact of engineering solutions

LO4: Ability to identify, formulate and solve engineering problems.

LO5: Ability to effectively communicate knowledge and opinions via written, oral visual means.

CONTRIBUTION OF THE COURSE TO VOCATIONAL EDUCATION

With the help of this course, students gain advanced mathematics knowledge for solving complex problems that require numerical analysis in the field of engineering.