

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Calculus I							
CODE: MATH111	SEMESTER: FALL						
LANGUAGE: ENGLISH	TYPE: COMPULSORY						
PRE-REQUISITES:-	THEORY	PRACTICAL	CREDIT	ECTS			
CO-REQUISITES:-							
WEEKLY HOURS:4	4	0	4	6			

CONTENT OF THE COURSE:

Trigonometric, Exponential, Inverse and Logarithmic Functions. Limits. Continuity. Limits Involving Infinity. Derivative, ChainRule. Implicit Differentiation,. Extreme Values, First Derivative Test. Concavity, Curve Sketching. Integrals, Fundamental Theorem of Calculus. Substitution, Areas, Volumes, Integration by Parts. Trigonometric Integrals, Derivatives of Inverse Trigonometric Functions, Trigonometric Substitutions. Integral Techniques.

OBJECTIVE OF THE COURSE:

To learn the concepts and methods of differential and Integral calculus for functions of a real variable. To apply calculus to problems taken primarily from the physical and engineering sciences. The mathematical preparation for higher level mathematics and science courses. An understanding of the logical sequence of advanced mathematics.

WEEKLY SCHEDULE					
Week	Topics				
1	Lines, Functions, Graphs				
2	Trigonometric, Exponential, Inverse and Logarithmic Functions.				
3	Limits				
4	One Sided Limits, Continuity				
5	Limits Involving Infinity				
6	Derivative, Chain Rule				
7	Implicit Differentiation, Derivatives of Inverse Trigonometric Functions				
8	Midterm				
9	Extreme Values, First Derivative Test				
10	Concavity				
11	Curve Sketching Integrals				
12	Substitution, Integration by Parts				
13	Areas				
14	Volumes				

TEXTBOOK:

Thomas, Weir, J. Hass, Thomas' Calculus Early Transcendentals, 13'th Edition, Pearson, 2014, ISBN10 0321884078

REFERENCE BOOKS:

R. Smith and R. Minton, Calculus, ISBN 978-0-07-338311-8.

INSTRUCTOR(S):	Assoc. Prof. Dr. Ece Yetkin ÇELİKEL
FORM PREPARATION DATE:	25.11.2019

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	3	2	0	0	0	0	0	0	0	0	0
LO2	3	2	0	0	0	0	0	0	0	0	0
LO3	2	3	0	0	0	0	0	0	0	0	0
LO4	2	3	0	0	0	0	0	0	0	0	0
LO5	3	2	0	0	0	0	0	0	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

LEARNING OUTCOMES OF THE COURSE:

LO1: A comprehension of mathematics (algebra, differential, integration ...) and fundamentals of science

LO2:Ability to apply knowledge of mathematics, science and engineering to problems in electronics engineering.

LO3:Ability to recognize the needs and challenges of ourage and to assess the global and social impact of engineering solutions **LO4:**Ability to identify, formulate and solve engineering problems. **LO5:**Ability to effectively communicate knowledge and opinions via written, oral visual means.

CONTRIBUTION OF THE COURSE TO VOCATIONAL EDUCATION

With the help of this course, students gain basic knowledge of fundamental mathematics to solve problems involving engineering mathematics and formulas.