

HASAN KALYONCU UNIVERSITY Faculty of Engineering Course Description Form

COURSE: Engineering Hydrology	/			
CODE: CE371	SEMESTER	FALL		
LANGUAGE: ENGLISH	TYPE: COM	PULSORY		
PRE-REQUISITES: -	THEORY	PRACTICAL	CREDIT	ECTS
CO-REQUISITES: -				
WEEKLY HOURS: 3	3	0	3	5

CONTENT OF THE COURSE:

The course serves as an introduction to the field of engineering hydrology. It covers fundamentals such as the hydrological cycle, catchment, losses, hydrographs and hyetographs. Design topics covered will be selected from: flood frequency analysis, determination of design rainfall intensity and hyetographs, peak flow estimation, design hydrograph estimation, groundwater process and modelling, and drought risk analysis/yield hydrology.

OBJECTIVE OF THE COURSE:

To provide an introduction to hydrology, including a study of the most important hydrological processes operating in the environment, and to hydrological ways of thinking.

WEEKLY	SCHEDULE AND PRE-STUDY PAGES
Week	Topics
1	Definition of hydrology, importance, scope, hydrological cycle and basic equations
2	Analysis of precipitation records
3	Evaporation and perspiration, measurement of evaporation, factors causing evaporation
4	Definition of infiltration, factors affecting infiltration and measurement
5	Definition and calculation of infiltration indices
6	Groundwater formation, groundwater
7	Free and pressurized aquifer, groundwater flow
8	Midterm
9	Surface flow
10	Definition of hydrograph, direct flow, base flow and unit hydrograph
11	Extraction of unit hydrograph
12	Level and flow measurements in rivers
13	Watershed hydrology
14	Importance of hydrology in agricultural production

TEXTBOOK: Hydrology in practice (Shaw, M.E. 1993),Ç.Ü. Hidroloji Ders Kitabı 1996 (Prof.Dr. Kazım Tülücü), Hidroloji Ders Notları(Prof.Dr. Nizamettin Çiftçi)

EVALUATION SYSTEM:		
IN-TERM STUDIES	QUANTITY	PERCENTAGE (%)
Midterm Exam	1	40
Homework		
Laboratory works		
Quiz	1	60
Final Exam		
TOTAL		
CONTRIBUTION OF	1	40
INTERM STUDIES TO		
OVERALL GRADE		
CONTRIBUTION OF FINAL	1	60
EXAMINATION TO		
OVERALL GRADE		
TOTAL	2	100

COURSE CATEGORY:	PERCENTAGE (%)
Mathematics and Basic Sciences	40
Engineering	60
Engineering Design	
Social Sciences	

TABLE OF ECTS / WORKLOAD:			
Activities	QUANTITY	Duration (Hour)	Total Workload
Course Duration	13	3	39
Hours for off-the-classroom study (Pre-study, practice)	14	7	98
Laboratory works			
Mid-term	1	2	2
Final examination	1	2	2
Homework			
Quiz			
Total Work Load			141
Total Work Load / 30			4,7
ECTS Credit of the Course			5

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11
L01	2	2	0	3	3	0	0	0	0	0	0
LO2	2	2	0	3	3	0	0	0	0	0	0
LO3	2	2	0	3	3	0	0	0	0	0	0
	PO: Program Outcomes LO: Learning Outcomes										
	Values: 0: None 1: Low 2: Medium 3: High										

INSTRUCTOR(S):	Asst.Prof.Dr. H.Çağan Kılınç
FORM PREPARATION DATE:	22.05.2019

LEARNING OUTCOMES OF THE	DDOCDAM OUTCOMES.
COURSE:	FROGRAM OUTCOMES:
LO1: Analyze precipitation records	PO1: Adequate knowledge in mathematics, science
LO2: measure groundwater flows	and engineering subjects pertaining to the relevant
LO3: Learns the importance of hydrological cycle	discipline; ability to use theoretical and applied
and design of water structures.	knowledge in these areas in complex engineering
	problems.
	PO2: Ability to identify, formulate, and solve
	complex engineering problems; ability to select and
	apply proper analysis and modeling methods for this
	PO3: Ability to design a complex system process
	device or product under realistic constraints and
	conditions in such a way as to meet the desired
	result: ability to apply modern design methods for
	this purpose.
	PO4: Ability to devise, select, and use modern
	techniques and tools needed for analyzing and
	solving complex problems encountered in
	engineering practice; ability to employ information
	technologies effectively.
	PO5: Ability to design and conduct experiments,
	gather data, analyze and interpret results for
	investigating complex engineering problems or
	ascipline specific research questions.
	and multi disciplinary teams: ability to work
	individually
	PO7: Ability to communicate effectively in Turkish.
	both orally and in writing; knowledge of a minimum
	of one foreign language; ability to write effective
	reports and comprehend written reports, prepare
	design and production reports, make effective
	presentations, and give and receive clear and
	intelligible instructions.
	PO8: Recognition of the need for lifelong learning;
	ability to access information, to follow developments
	in science and technology, and to continue to educate
	mm/nersen. POQ: Consciousness to behave according to athical
	principles and professional and ethical responsibility:
	knowledge on standards used in engineering practice
	PO10: Knowledge about business life practices such
	as project management, risk management, and
	change management; awareness in entrepreneurship,
	innovation; knowledge about sustainable
	development.
	PO11: Knowledge about the global and social effects
	of engineering practices on health, environment, and
	safety, and contemporary issues of the century
	reflected into the field of engineering; awareness of
	the legal consequences of engineering solutions.